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The initial use of composite sampling involved the analysis of many negative samples with relatively
high laboratory cost (Dorfman sampling). We propose a method of double compositing and compare
its efficiency with Dorfman sampling. The variability of composite measurement samples has
environmental interest (hot spots). The precision of these estimates depends on the kurtosis of the
distribution; leptokurtic distributions (y, >0) have increased precision as the number of field
samples is increased. The opposite effect is obtained for platykurtic distributions. In the lognormal
case, coverage probabilities are reasonable for o <0.5. The Poisson distribution can be associated
with temporal compositing, of particular interest where radioactive measurements are taken. Sample
size considerations indicate that the total sampling effort is directly proportional to the length of time
sampled. If there is background radiation then increasing levels of this radiation require larger
sample sizes to detect the same difference in radiation.
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1. Introduction

Composite sampling goes back to the Second World War when blood of army recruits was
pooled in the process of determining the presence of the syphilis bacterium (Dorfman,
1943). The rarer the occurrence of syphilis the more efficient the composite sampling
strategy. Since the introduction of this strategy a host of applications have been made,
including scenarios where the amount of a substance is to be measured—not just the
presence or absence. A comprehensive, annotated bibliography summarizing papers on
composite sampling from 1936 to 1992 can be found in Boswell ef al. (1996). This paper
makes a useful distinction between sampling for presence or absence of a characteristic
and estimation. In the latter case there is additional emphasis on variance of the estimate.
Closely related to composite sampling are double sampling and ranked set sampling. An
annotated bibliography on ranked set sampling can be found in Kaur et al. (1995). An
informative discussion of, and application to, bioremediation can be found in O’Brien and
Gilbert (1997). Other examples of composite sampling have involved determining leaks in
sealed radioactive sources (Thomas et al., 1973), searching for (rare) high grade ore
(Garrett and Sinding-Larson, 1984), ground water screening (Rajagopol and Williams,
1989), and assessing the effectiveness of clean-up of PCB’s (listed in Boswell ez al., 1996).
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While composite sampling is not a panacea for environmental estimation it does have
potential for substantial saving in sampling costs. One barrier to greater use of composite
sampling has been regulatory requirements that are usually couched in terms of single field
samples and do not allow pooling of samples. It will take specific demonstrations by
statisticians to show that in certain situations regulatory requirements can be met with
composite sampling.

A second reason why composite sampling is less popular than it could, or should be, is
that chemists have a bias against false positives so that detection levels are frequently
made much higher than necessary. It is better to say, ‘‘below the detection level’’ than to
claim that the substance is not present.

2. Dorfman sampling

Following Dorfman (1943), let @ be the prevalence rate of positive field samples, 7 the
number of field samples in a composite sample, n* the probability that the composite
sample is positive, N the number of field samples to be analyzed (so that there are N/n
composite samples). Let T be the total number of composite samples that have to be
analyzed in detail. Then the expected value, E(T), is,

N N
E(T)=— — |z 1
1) =" () m
The ratio of the expected number of composite samples to the total number of field
samples is a measure of the relative cost of composite sampling to simple sampling,

E(T 1 1
Relative Cost = L =471 = nt+l_
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n
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This function can be minimized for n relative to the prevalence m or vice versa.

The rarer this characteristic the lower the relative cost. The Relative Cost curve relative
to composite pool size, n, is rather flat for low prevalences. For example, for 7 = 0.001 the
values the Relative Cost for n = 20, 30, 50 are 0.070, 0.063 and 0.069, respectively. Fig. 1
plots the relative cost as a function of the prevalence, 7. If there is uncertainty about the
value of the prevalence this figure indicates that there is little advantage in taking very
large composite samples for the purpose of detecting the presence or absence of a
characteristic. The figure suggests that as a rule of thumb a composite pool size of about
five yields substantial savings over a large range of prevalences.

3. Double compositing

We now describe a technique which enhances the compositing approach. Where
compositing of samples is done rather easily, such as collecting water at a tap for lead
analysis, this approach has specific advantages as will be illustrated. The proposed scheme
is called double compositing and involves collecting two (or more) composite samples
from a source. The basic idea is to take double samples and group them in a grid pattern;
this could be done by physically collecting two field samples at one location or taking field
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Figure 1. Cost effectiveness of composite sampling as function of prevalence for three composite
sample sizes.

samples and splitting them in the laboratory. One obvious advantage is that if the
characteristic looked for is rare, then by this technique the sample is immediately
identified if only one of the composited rows and columns is positive. Also if more than
one row and column is positive then only the samples at the intersection of the positive
rows and columns have to be retested. This approach may be particularly fruitful in
spatially correlated observations such as hot spots.

Let K and L be the number of rows and columns for the double compositing scheme,
then the rows can be thought of as K single composite samples of length L and the columns
as L single composite samples of length K. From the results for single composite samples
the probability of at least one positive sample inarowis iy = 1 — (1 — n)L and we expect
7y K of the row composite samples to be positive. Similarly we expect nxL of the column
composite samples to be positive. To compute E(T), the expected number of samples
analyzed, a recursive formula has been developed for the conditional probability of &
positive rows and [ positive columns given that m is the number of true positive field
samples. The recursive formula is:

KL — (m — 1)]P[k, l|m] = Plk, llm — 1][kl — (m — 1)]
+ Plk — 1,1m — 1JI[K — (k — 1)]
+ Plk, I — 1|m — 1Jk[L — (I—1)]
4+ Plk—1,0—1m— 1)K — (k— D)L — (I—1)].

The probabilities are zero if k>m, [>m, k =0,l=0,m =0, ki<m, k>K, [>L, and the
initial condition is, P[1,1|1] = 1.

The relative cost of this scheme is the expected number of tests, E(T'), as before divided
by the number of tests, KL, without compositing as illustrated in Fig. 2 for the case where
K = L. The relative costs for double composite samples are lower than single composite
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Figure 2. Cost effectiveness of double compositing compared with Dorfman compositing.

samples for a range of low prevalences and large pool size. Single composite samples have
a lower cost for both high prevalences and very low prevalences for a given pool size. The
lower cost at very low prevalences for single composite samples occurs approximately at
prevalences where the expected number of positive samples in the KL samples is less than
1. Double composite samples can significantly reduce costs compared to single composite
samples over a range of low prevalences provided a sufficiently large pool sizes can be
used. Also as the pool size increases the costs for double composite samples decrease over
a wider range of prevalences. Fig. 2 also indicates that as the prevalence becomes small the
pool size becomes large, but the curve is very flat indicating the insensitivity of relative
cost to pool size.

A minor improvement can be made if an overall composited sample can be analyzed
first. This would be equivalent to Dorfman sampling. If the overall sample were positive
the row and column scheme proposed here would be applied. This would require three
separate instances of assays and may not be practicable.

4. Estimating variability

In composite measurement sampling field samples are composited with a view to reducing
laboratory analysis while maintaining or increasing the precision of the estimates of
concentration. We will follow the notation of Edland and van Belle (1994). The samples to
be pooled are called the field samples and values of the endpoint of interest will be denoted
by the random variable X. The samples to be composited and analyzed are called the
laboratory samples and endpoints denoted by Y. Unless indicated otherwise we will
assume the n field samples are composited into one laboratory sample and / laboratory
samples are analyzed. Specifically, the i-th laboratory sample, Y, is defined by ¥; = %ZXU».

Let the mean and variance of the field sample, X, be y, and o2, respectively. Suppose
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thatX;;,i =1,2,...,1,j=1,2,..., nare independent, identically distributed samples. Let
the mean and variance of the composited samples be yx, and 03. Then ¢? = no’_%. Basic
results associated with this formulation can be found in Lovison (1993) and Edland and
van Belle (1994).

In environmental sampling a key parameter of interest is the variability, rather than the
mean. For example, the search for ‘‘hot spots’’ deals with the variability of the site, not the
mean level of contamination. Hence, we are particularly interested in the precision of 2.
The precision of this estimate of the variance depends on the fourth order moments of the
distribution being sampled. The kurtosis, y,, for a random variable is

My

@r

Y2 =

where (i, is the fourth central moment and ¢? is the variance. The variance of the estimate
of the variance of the composited sample is
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which, in terms of the distribution of the field samples becomes
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Table 1 lists the values of the kurtosis statistic for a variety of distributions. For the
normal case 7, = 0 and the right hand term drops out. In this case, the precision of the
estimate of the variability of X is only a function of the number of composite samples, /,
that are taken. Distributions with y, >0 (leptokurtic) are characterized by improved
precision of the estimate of the variability as the number of field samples in the composite
sample increase. For y, <0 (platykurtic) this precision decreases since the term on the
right hand side becomes smaller as the number of field samples (or composite samples)

Table 1. Kurtosis for a variety of distributions.

Distribution of X 72(X) Comments
Normal 0
Poisson } Approaches 0 as A— o0
Uniform (continuous) —-1.2 Independent of range
Uniform (two-point) —-2.0 ““Worst case’’
Unimodal symmetric > —1.2
Double exponential 3
Exponential 6
t-distribution ﬁ v>4
Lognormal (0 —1)(@® 4+ 30* + 60 + 6) where o = ¢
o’ =1 112.29
c?=0.1 1.856
Binomial %
0.2113<p<0.7887 <0
p<0.2113,p>0.7887 >0




176 van Belle, Griffith, Edland

increase. The ‘‘worst case’’ scenario (where compositing decreases the precision of the
estimate of variability) is the two point uniform distribution. In this case y, = —2.0. The
uniform distribution has 7, = — 1.2 and this is the smallest value that can be taken on by
any symmetric distribution (Kendall, Stuart and Ord, 1987, page 107).

Table 1 also indicates that in the Poisson case (and the binomial) the value of 7y,
approaches zero as the mean increases. This, of course, is consistent with the fact that the
distributions approach normality as the mean increases. Thus for large values of the mean
of these distributions we can assume the normal model.

The binomial distribution is platykurtic for values of 0.2113 < p < 0.7887 and
leptokurtic for values outside this range. Hence, when samples are composited with
conditions that occur rarely (or most of the time) the precision of the estimate of variability
is increased with compositing.

5. Large sample lognormal case

The lognormal distribution is of considerable environmental interest as the most common
distribution after the normal. Little work has been done on implementing composite
sampling for the lognormal distribution. From the previous section some conclusions can
be drawn about the lognormal. Table 1 indicates that the second term in Equation (4) can
be very important when there is considerable variability. For a variance of 1, y, = 112.29,
and the second term dominates the first term unless # is made very large. For a variance of
0.1 the second term is much less dominant. The conclusion from this analysis is that in the
lognormal case with substantial field variability there is considerable benefit in
compositing in order to increase the precision of the estimate of variability.

Since an increase in n makes the central limit theorem applicable we investigated
coverage probabilities of lognormally composited samples. A first approach uses the
central limit theorem. Since the total sample size to be considered is #/ it is reasonable to
investigate the accuracy of the lognormal distribution. Table 2 lists the coverage of
confidence intervals for samples from a lognormal distributions with standard deviations
ranging from 0.1 to 2.0. For standard deviations of 0.5 or less the coverage probabilities are
reasonably good. An analytic solution is required for samples from more extreme
distributions. This is consistent with the findings of Barakat (1976) who discusses the
““permanence of the lognormal probability density function’’ for sums of lognormal
random variables.

Table 2. True coverage probabilities for nomimal 95% confidence intervals when sampling from
lognormally distributed field samples. Monte Carlo sampling of 50,000 samples.

o
Sample Size 0.1 0.5 1.0 2.0
nl =5 0.95 0.93 0.86 0.61
nl =20 0.95 0.93 0.89 0.67
nl =50 0.95 0.94 0.92 0.74
nl =100 0.95 0.95 0.93 0.78

nl = 200 0.95 0.95 0.94 0.82
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6. Poisson case for estimating radiation counts above
background

The Poisson distribution is important for modeling radioactive counts and composite
sampling has potential application. This application is an example where quantitative
estimation is of interest, not just presence or absence of a characteristic. A feature that is
particularly attractive is that the radioactivity of composited field samples is the sum of the
radioactivity of the individual field samples.

We will work with the total of composited field samples rather than the mean. Assume
that X;; are i.i.d. Poisson(0). Let V; = ZX; be the total for the n field samples making up
the composite. Then V; ~ Poisson(nf)). Let W = XV, be the sum of / composite samples.
Then W is Poisson(n/0). Using the square root transformation as a variance stabilizing and
normalizing transformation we get, in units of a field sample that, asymptotically:

Z= \/E~N<\/§,%).
nl nl

This result is particularly simple and allows the immediate application of all the results for
the normal case found in Edland and van Belle (1994). We illustrate in the case of
comparison of two independent samples. The usual sample size calculation formula for
this situation (Fisher and van Belle, 1993) is

2
2(zy_yp tz1-p) a?

nl = 5
(1 — 1)

(5)

In many sample size calculations the Type I error is fixed at 0.05, and the power is required
to be 0.80. For oo = 0.05, f = 0.20 the values of z, _u2 and z;_p are 1.96 and 0.84
respectively and 2(zy _,/, + 7 _/3)2 = 15.68 which can be rounded up to 16. So a quick
rule of thumb for sample size calculations is

1602

nl=———.
(11 _.“2)

In the Poisson case using the square root transformation and » field samples per
composite sample, and I composite samples, the formula becomes

4
RO

For example, if the mean radioactivity is assumed to be 0.5 counts per minute under one
condition and 0.25 counts per minute under another condition then the sample size
required per group is 23. This total of 23 observations per group can be obtained by either
using twenty three field samples or, for example, compositing field samples in units of five
and analyzing five composite samples.

In the Poisson case the means are frequently a function of the length of time observed
such as radioactive counts per unit time. This is an example of composite sampling in time
rather than space. The composite sampling strategy can then be formulated explicitly in
terms of the length of time that the field samples are counted. Let the means 6, and 6, be

nl
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the means per unit time and the observation period per field sample of duration, 7. Then V;
are Poisson with mean 70;. Hence the sample size required can be shown to be

4

CT(/0, - VB

nl

By increasing the observation period 7 we reduce the sampling effort proportionately to 7,
not as the square root of 7. For example, doubling the observation period of the field
sample reduces the required number of laboratory samples by a factor of two. Similarly,
doubling the laboratory observation time reduces the number of field samples to be taken
by the same factor. Thus there is an interplay between field samples, laboratory samples
and observation time that can be explored for specific situations.

A test for Poissonness can be carried out on the composite sample totals. Let V and s> be
the sample mean and variance of the composite samples. Then under the assumption that
the composite sample means come from a Poisson distribution the quantity,

(- 1)s?
%

is approximately chi-square with I — 1 degrees of freedom. This is the usual Poisson
homogeneity test. Large values of the statistic indicate over-dispersion and small values
under-dispersion.

We now discuss the case of Poisson data with background radiation. Suppose that the
background level of radiation is 0* and let 0, and 0, be the additional radiation over
background. Then, X; is Poisson (6" + 6;). We can then apply the sample size formula in
terms of square roots. However, this can be more transparently approximated by the usual
sample size formula in the original scale and assuming the normal approximation to the
Poisson distribution. The rule-of-thumb sample size formula is

16[6" + (0, + 6,)/2]

nl = >
(0, — 6,)

where the variance of the response in the two populations is estimated by
0" 4+ (0, 4+ 0,)/2. The denominator does not include the background radiation but the
numerator does. Since the sample size is proportional to the numerator, increasing levels
of background radiation require larger sample sizes to detect the same difference in
radiation levels.

Table 3 considers sample sizes for a variety of background levels. The first row of the
table considers the two sample situation when there is no background radiation and the
means are 1 and 2. The total sampling effort is n/ = 24, which can be split, again, between
field and laboratory efforts. As the background increases the sample sizes increase. For
example, when the background is 1.5 (and thus constitutes sixty percent of the first sample
mean) the required sample size is 48, double the sampling effort at no background
radiation.
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Table 3. Sample size and background radiation. Two sample case: # is the number of field samples
per I composite samples. Numbers in parentheses in last column are sampling effort as percent of
effort when there is no background radiation (0" = 0).

Background Mean Sample 1 Mean Sample 2

0" 0" + 0, Background % 0" + 0, nl

0 1 0 2 24.0

0.1 1.1 9 2.1 24.8 (1.03)
0.5 1.5 33 2.5 32.0 (1.33)
1.0 2.0 50 3.0 40.0 (1.67)
1.5 25 60 3.5 48.0 (2.00)
5.0 6.0 83 7.0 104.0 (4.33)

7. Discussion

Composite sampling has potential for both application and development of new
methodological approaches. Researchers should become aware of the potential of this,
and other, statistical techniques that may save substantial sums of money.

The Poisson model with background noise is a useful model for epidemiological
investigations of effects of environmental pollution, for example, investigating whether
disease occurrence is above background level.

Creative adaptations of compositing can be developed for specific situations. For
example, if a cheap measurement can be made of a variable of interest and this
measurement is highly correlated with a more expensive measurement it may be cost
effective to composite and measure the cheap variable first. If it has low value then no
further testing would be done.

An area that requires further research is power calculations for lognormal field sample
distributions
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